COGNOME	NOME	Matr.	

Firma dello studente

A

II Prova di Analisi Matematica I

20 dicembre 2004

Esercizio 1

Si disegni (qualitativamente) il grafico della funzione

$$f(x) = \frac{1}{x^2} e^x$$

In particolare si studino il segno di f, gli asintoti e la crescenza/decrescenza.

Calcoli e disegno: Dominio: $D(f) = IR \setminus \{0\}$

Segno di f: f(x) > 0 per ogni $x \in D(f)$ perche la funzione esponenziale é posistiva per ogni x e la funzione x^2 é positiva per x diverso da x0.

Asintoti: La funzione f ha un asintoto verticale in x = 0

$$\lim_{x \to 0^{-}} \frac{1}{x^{2}} e^{x} = \lim_{x \to 0^{+}} \frac{1}{x^{2}} e^{x} = +\infty$$

(il numeratore tende a uno, il denominatore a zero).

 $\lim_{x\to-\infty}\frac{1}{x^2}e^x=0$ (il numeratore tende a zero il denominatore a $+\infty$), pertanto f ha un asintoto orizzontale di equazione y=0 per $x\to-\infty$.

 $\lim_{x\to+\infty} \frac{1}{x^2} e^x = +\infty$ (il numeratore tende a $+\infty$ piu velocemente del denominatore). Vediamo se f ha un asintoto obliquo: $\lim_{x\to+\infty} \frac{1}{x} = +\infty$ pertanto non ha un asintoto obliquo per $x\to+\infty$ perche questo limiti dovrebbe essere finito.

Crescenza/decrescenza: $f'(x) = \frac{e^x x^2 - 2xe^x}{x^4} = \frac{x-2}{x^3}e^x$.

$$f'(x) \left\{ \begin{array}{ll} >0 & \text{se } x < 0 & f \text{ crescente} \\ <0 & \text{se } 0 < x < 2 & f \text{ decrescente} \\ =0 & \text{se } x = 2 & \text{punto di minimo relativo} \\ >0 & \text{se } x > 2 & f \text{ crescente} \end{array} \right.$$

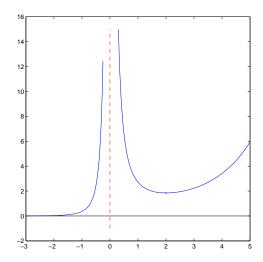


Figure 1: f(x)

Si calcoli l'integrale

$$\int_0^1 \frac{e^{3x}}{e^{2x} + 1} \, dx$$

Risultato: $e - \arctan e - 1 + \frac{\pi}{4}$

Calcoli:

Col cambiamento di variabile $e^x=t,\,e^xdx=dt,\,dx=\frac{dt}{t}.$

$$\int_0^1 \frac{e^{3x}}{e^{2x} + 1} dx = \int_1^e \frac{t^3}{(t^2 + 1)t} dt = \int_1^e \frac{t^2}{t^2 + 1} dt = \int_1^e \left(1 - \frac{1}{t^2 + 1}\right) dt = t - \arctan t \Big|_1^e \int_0^1 \frac{e^{3x}}{e^{2x} + 1} dx = (e - \arctan e) - (1 - \frac{\pi}{4})$$

Si stabiliscano i valori di x > 0 per i quali la serie

$$\sum_{n=0}^{\infty} \frac{3n \, x^n}{(n^3+1) \, 2^n}$$

è convergente.

Soluzione: $0 < x \le 2$

Calcoli:

Applico il criterio del rapporto

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{3(n+1) \, x^{n+1}}{[(n+1)^3 + 1] \, 2^{n+1}} \frac{(n^3+1) \, 2^n}{3n \, x^n} = \lim_{n \to \infty} \frac{3(n+1)}{3n} \frac{(n^3+1)}{[(n+1)^3 + 1]} \frac{x}{2} = \frac{x}{2}$$

Se $\frac{x}{2}$ < 1 la serie converge.

Se $\frac{x}{2} > 1$ la serie diverge.

Se $\frac{x}{2} = 1$, x = 2 la serie diventa $\sum_{n=0}^{\infty} \frac{3n}{(n^3 + 1)}$ che è asintotica a $\sum_{n=0}^{\infty} \frac{3}{n^2}$ per tanto convergente.

Si determini la soluzione del problema di Cauchy

$$\begin{cases} y'' - 5y' + 6y = 6x + 1\\ y(0) = 1\\ y'(0) = 0 \end{cases}$$

Soluzione: $y(x) = -e^{3x} + e^{2x} + x + 1$

Calcoli:

Equazione omogenea: z'' - 5z' + 6z = 0

$$s^2 - 5s + 6 = 0$$
, $s = \frac{5 \pm \sqrt{25 - 24}}{2}$, $s_1 = 3$, $s_2 = 2$

Soluzione generale dell'equazione omogenea: $z(x) = Ae^{3x} + Be^{2x}$.

Soluzione particolare: $\widetilde{y}(x) = ax + b$. $(\widetilde{y}'(x) = a, \widetilde{y}''(x) = 0)$.

$$-5a + 6(ax + b) = 6x + 1$$
, $6ax + (6b - 5a) = 6x + 1$,

$$a = 1, \ b = \frac{1+5a}{6} = 1$$

 $\widetilde{y}(x) = x + 1.$

$$y(x) = Ae^{3x} + Be^{2x} + x + 1, \quad y'(x) = 3Ae^{3x} + 2Be^{2x} + 1.$$

$$y(0) = A + B + 1 = 1$$
, $A + B = 0$, $B = -A$.

$$y'(0) = 3A + 2B + 1 = 0$$
, $A + 1 = 0$, $A = -1$, $B = 1$.

$$y(x) = -e^{3x} + e^{2x} + x + 1.$$

COGNOME	NOME	Matr.	

Firma dello studente _

B

II Prova di Analisi Matematica I

20 dicembre 2004

Esercizio 1

Si disegni (qualitativamente) il grafico della funzione

$$f(x) = \frac{1}{x-3} e^{-x}$$

In particolare si studino il segno di f, gli asintoti e la crescenza/decrescenza.

Calcoli e disegno: Dominio: $D(f) = \mathbb{R} \setminus \{3\}$

Segno di f: f(x) $\begin{cases} < 0 & \text{se } x < 3 \\ > 0 & \text{se } x > 3 \end{cases}$ (la funzione e^{-x} é posistiva per ogni x).

Asintoti: La funzione f ha un asintoto verticale in x = 3

$$\lim_{x \to 3^{-}} \frac{1}{x - 3} e^{-x} = -\infty, \quad \lim_{x \to 3^{+}} \frac{1}{x - 3} e^{-x} = +\infty$$

(il numeratore tende a uno, il denominatore a zero).

 $\lim_{x\to+\infty}\frac{1}{x-3}\,e^{-x}=0$ (il numeratore tende a zero il denominatore a ∞), pertanto f ha un asintoto orizzontale di equazione y=0 per $x\to+\infty$.

 $\lim_{x\to-\infty}\frac{1}{x-3}e^{-x}=-\infty$ (il numeratore tende a ∞ piu velocemente del denominatore). Vediamo se f ha un asintoto obliquo: $\lim_{x\to-\infty}\frac{f}{x}=\infty$ pertanto non ha un asintoto obliquo per $x\to-\infty$ perche questo limiti dovrebbe essere finito.

Crescenza/decrescenza:
$$f'(x) = \frac{-e^{-x}(x-3) - e^{-x}}{(x-3)^2} = \frac{2-x}{x^2}e^{-x}$$
.

$$f'(x) \begin{cases} > 0 & \text{se } x < 2 \\ = 0 & \text{se } x = 2 \\ < 0 & \text{se } x > 2 \end{cases}$$
 punto di masimo relativo
$$< 0 & \text{se } x > 2 \quad f \text{ decrescente}$$

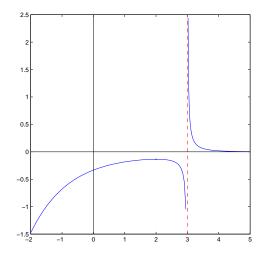


Figure 2: f(x)

Si calcoli l'integrale

$$\int_0^1 \frac{1}{e^x + 2} \, dx$$

Risultato:
$$\frac{1}{2} \left[1 + \log \left(\frac{3}{e+2} \right) \right]$$

Calcoli:

Col cambiamento di variabile $e^x=t,\,e^xdx=dt,\,dx=\frac{dt}{t}.$

$$\int_0^1 \frac{1}{e^x + 2} \, dx = \int_1^e \frac{1}{(t+2)t} \, dt = \int_1^e \left(\frac{A}{t+2} + \frac{B}{t} \right) \, dt = \int_1^e \frac{At + B(t+2)}{(t+2)t} \, dt$$

$$2B = 1, B = 1/2.$$

 $A + B = 0, A = -B = -1/2.$

$$\int_0^1 \frac{1}{e^x + 2} \, dx = \frac{1}{2} \int_1^e \left(\frac{1}{t} - \frac{1}{t+2} \right) \, dt = \frac{1}{2} \left(\log|t| - \log|t+2| \right) \Big|_1^e$$
$$= \frac{1}{2} [(1 - \log(e+2)) - (0 - \log(3))] = \frac{1}{2} [1 + \log(3) - \log(e+2)]$$

Si stabiliscano i valori di x > 0 per i quali la serie

$$\sum_{n=0}^{\infty} \frac{n \, x^n}{(n^2 + 2) \, 3^n}$$

è convergente

Soluzione: 0 < x < 3

Calcoli:

Applico il criterio del rapporto

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(n+1) x^{n+1}}{[(n+1)^2 + 2] \, 3^{n+1}} \frac{(n^2 + 2) \, 3^n}{n \, x^n} = \lim_{n \to \infty} \frac{n+1}{n} \frac{(n^2 + 2)}{[(n+1)^2 + 2]} \frac{x}{3} = \frac{x}{3}$$

Se $\frac{x}{3}$ < 1 la serie converge.

Se $\frac{x}{3} > 1$ la serie diverge.

Se $\frac{x}{3} = 1$, x = 3 la serie diventa $\sum_{n=0}^{\infty} \frac{n}{(n^2 + 2)}$ che è asintotica a $\sum_{n=0}^{\infty} \frac{1}{n}$ per tanto divergente.

Si determini la soluzione del problema di Cauchy

$$\begin{cases} y'' + y' - 6y = 12x - 2\\ y(0) = 0\\ y'(0) = 1 \end{cases}$$

Soluzione:
$$y(x) = -\frac{3}{5}e^{-3x} + \frac{3}{5}e^{2x} - 2x$$

Calcoli:

Equazione omogenea: z'' + z' - 6z = 0

$$s^2 + s - 6 = 0$$
, $s = \frac{-1 \pm \sqrt{1 + 24}}{2}$, $s_1 = -3$, $s_2 = 2$

Soluzione generale dell'equazione omogenea $z(x) = Ae^{-3x} + Be^{2x}$.

Soluzione particolare $\widetilde{y}(x) = ax + b$. $(\widetilde{y}'(x) = a, \widetilde{y}''(x) = 0)$.

$$a - 6(ax + b) = 12x - 2$$
, $-6ax + (a - 6b) = 12x - 2$,

$$a = -2, \ b = \frac{a+2}{6} = 0$$

 $\widetilde{y}(x) = -2x.$

$$y(x) = Ae^{-3x} + Be^{2x} - 2x$$
, $y'(x) = -3Ae^{-3x} + 2Be^{2x} - 2$.

$$y(0) = A + B = 0, \quad A = -B.$$

$$y'(0) = -3A + 2B - 2 = 1$$
, $5B = 3$, $B = 3/5$, $A = -3/5$.

$$y(x) = -\frac{3}{5}e^{-3x} + \frac{3}{5}e^{2x} - 2x.$$