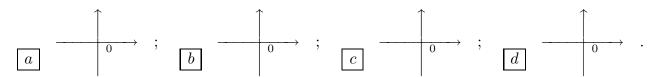
- 1. Per quale valore del parametro α l'equazione $e^x = 2x + \alpha$ ha due soluzioni distinte? $\boxed{a} \quad \alpha > 2 2 \ln 2; \quad \boxed{b} \quad \alpha > -2; \quad \boxed{c} \quad \alpha < -2 \ln 2; \quad \boxed{d} \quad \alpha < 2 + 2 \ln 2.$
- 3. Sia $f: \mathbf{R} \to \mathbf{R}$ continua. Quale delle seguenti affermazioni è sempre vera? \boxed{a} Se f è due volte derivabile e $f'(x_0) = f''(x_0) = 0$ allora x_0 non è nè massimo nè minimo relativo; \boxed{b} Se, per ogni x, f(x) > 0 e se $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = 0$ allora f ha massimo in \mathbf{R} ; \boxed{c} Se f è due volte derivabile e x_0 è un punto di massimo relativo per f allora $f''(x_0) < 0$; \boxed{d} Se f è due volte derivabile e $f''(x_0) < 0$ allora x_0 è un punto di massimo relativo.
- 4. Quanti punti di annullamento (distinti) ha la funzione $f(x) = x^3 3x^2 + x$? \boxed{a} 2; \boxed{b} nessuno; \boxed{c} 3; \boxed{d} 1.
- 5. Per quale valore del parametro β la funzione $g(x) = \begin{cases} x^2 + \beta x & \text{se } x < 0 \\ \log(1+2x) & \text{se } x \ge 0 \end{cases}$ è derivabile nel punto $x_0 = 0$? \boxed{a} -1/2; \boxed{b} 1/2; \boxed{c} 2; \boxed{d} -3.
- 6. Sia $f:[0,1] \to \mathbf{R}$. Quale delle seguenti affermazioni è necessariamente vera? a Se, per ogni x, f'(x) < 0 allora f è invertibile in [0,1]; b Se, per ogni x, f'(x) < 0 allora l'equazione f(x) = 1/2 ha una soluzione in [0,1]; c Se f ha massimo e minimo in [0,1] allora f è continua in [0,1]; d Se f(0) = f(1) = 100 allora l'equazione f(x) = 0 non ha soluzioni in [0,1].
- 7. Sia $f: \mathbf{R} \to \mathbf{R}$ continua e derivabile. Se f(0) = 0 e f'(0) < 0 allora il grafico di $\frac{1 f(x)}{f(x) + 1}$ vicino all'origine è:

- 8. Siano $f(x) = \frac{x-1}{x+1}$ e $g(y) = \sqrt{y+2}$. Qual è l'insieme dove è definita la funzione composta $(g \circ f)(x)$? $a (-\infty, -1) \cup [0, +\infty)$; b (-1, -1/3]; $c (-\infty, -1) \cup [-1/3, +\infty)$; d [-3, -1).
- 9. Per quale valore del parametro α la funzione $f(x) = \begin{cases} \sin(\alpha x)/x & \text{se } x < 0 \\ (x+1)/(x+2) & \text{se } x \ge 0 \end{cases}$ è continua nel punto $x_0 = 0$? $\boxed{a} \quad \alpha = -2$; $\boxed{b} \quad \alpha = 2$; $\boxed{c} \quad \alpha = 1/2$; $\boxed{d} \quad \alpha = -1/2$.
- 10. Sia $f(x) = \sqrt{x^2 + 1} (x + \sin(\pi x))$. Allora $f'(1) = a \frac{\pi}{2}$; $b = \frac{3 + 2\pi}{\sqrt{2}}$; $c = \frac{3 2\pi}{\sqrt{2}}$; $d = 12 4\pi$.

- 1. Sia $g:[0,1] \to \mathbf{R}$. Quale delle seguenti affermazioni è necessariamente vera? \boxed{a} Se, per ogni x, g'(x) > 0 allora l'equazione g(x) = 1/2 ha una soluzione in [0,1]; \boxed{b} Se g ha massimo e minimo in [0,1] allora g è continua in [0,1]; \boxed{c} Se g(0) = g(1) = 100 allora l'equazione g(x) = 0 non ha soluzioni in [0,1]; \boxed{d} Se, per ogni x, g'(x) > 0 allora g è invertibile in [0,1].
- 2. Sia $g: \mathbf{R} \to \mathbf{R}$ continua. Quale delle seguenti affermazioni è sempre vera? \boxed{a} Se, per ogni x, g(x) < 0 e se $\lim_{x \to -\infty} g(x) = \lim_{x \to +\infty} g(x) = 0$ allora g ha minimo in \mathbf{R} ; \boxed{b} Se g è due volte derivabile e x_0 è un punto di minimo relativo per g allora $g''(x_0) > 0$; \boxed{c} Se g è due volte derivabile e $g''(x_0) > 0$ allora x_0 è un punto di minimo relativo; \boxed{d} Se g è due volte derivabile e $g''(x_0) = g''(x_0) = 0$ allora x_0 non è nè massimo nè minimo relativo.
- 3. Sia $g: \mathbf{R} \to \mathbf{R}$ continua e derivabile. Se g(0) = 0 e g'(0) > 0 allora il grafico di $\frac{1 g(x)}{g^2(x) + 1}$ vicino all'origine è:

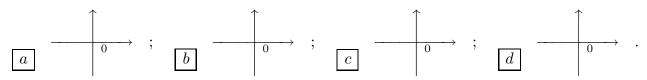
- 4. Per quale valore del parametro α la funzione $f(x) = \begin{cases} \log(1+\alpha x)/x & \text{se } x < 0 \\ (x-1)/(x+2) & \text{se } x \ge 0 \end{cases}$ è continua nel punto $x_0 = 0$? \boxed{a} $\alpha = 2$; \boxed{b} $\alpha = 1/2$; \boxed{c} $\alpha = -1/2$; \boxed{d} $\alpha = -2$.
- 5. Per quale valore del parametro β l'equazione $e^x = 3x + \beta$ ha due soluzioni distinte? $a \beta > -3$; $b \beta < -3 \ln 3$; $c \beta < 3 + 3 \ln 3$; $d \beta > 3 3 \ln 3$.
- 6. Siano $f(x) = \frac{x-1}{x+1}$ e $g(y) = \sqrt{y-2}$. Qual è l'insieme dove è definita la funzione composta $(g \circ f)(x)$? a (-1,-1/3]; $b (-\infty,-1) \cup [-1/3,+\infty)$; c [-3,-1); $d (-\infty,-1) \cup [0,+\infty)$.
- 7. Quanti punti di annullamento (distinti) ha la funzione $f(x) = x^3 3x^2 + 3x$? a nessuno; b 3; c 1; d 2.
- 9. Sia $f(x) = (1+x^2)^2 (x + \sin(\pi x))$. Allora $f'(1) = a \frac{3+2\pi}{\sqrt{2}}$; $b \frac{3-2\pi}{\sqrt{2}}$; $c 12-4\pi$; $d -\frac{\pi}{2}$.
- 10. Per quale valore del parametro β la funzione $g(x) = \begin{cases} x^2 \beta x & \text{se } x < 0 \\ \log(1+3x) & \text{se } x \ge 0 \end{cases}$ è derivabile nel punto $x_0 = 0$? \boxed{a} 1/2; \boxed{b} 2; \boxed{c} -3; \boxed{d} -1/2.

- 1. Siano $f(x) = \frac{x-1}{x+1}$ e $g(y) = \sqrt{y+1}$. Qual è l'insieme dove è definita la funzione composta $(g \circ f)(x)$? $a = (-\infty, -1) \cup [-1/3, +\infty)$; b = [-3, -1); $c = (-\infty, -1) \cup [0, +\infty)$; d = (-1, -1/3).
- 2. Sia $h : \mathbf{R} \to \mathbf{R}$ continua e derivabile. Se h(0) = 0 e h'(0) < 0 allora il grafico di $\frac{-1 + h(x)}{h(x) + 1}$ vicino all'origine è:



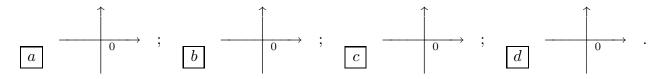
- 3. Quanti punti di annullamento (distinti) ha la funzione $f(x) = x^3 4x^2 + 4x$? \boxed{a} 3; \boxed{b} 1; \boxed{c} 2; \boxed{d} nessuno.
- 4. Sia $f(x) = \frac{1}{1+x^2}(x+\sin(\pi x))$. Allora $f'(1) = a \frac{3-2\pi}{\sqrt{2}}$; $b 12-4\pi$; $c -\frac{\pi}{2}$; $d \frac{3+2\pi}{\sqrt{2}}$.
- 5. Sia $h:[0,1] \to \mathbf{R}$. Quale delle seguenti affermazioni è necessariamente vera? \boxed{a} Se h ha massimo e minimo in [0,1] allora h è continua in [0,1]; \boxed{b} Se h(0)=h(1)=100 allora l'equazione h(x)=0 non ha soluzioni in [0,1]; \boxed{c} Se, per ogni x, h'(x)<0 allora h è invertibile in [0,1]; \boxed{d} Se, per ogni x, h'(x)<0 allora l'equazione h(x)=1/2 ha una soluzione in [0,1].
- 6. Sia h(x) una funzione derivabile. Quale è la derivata di $\frac{1}{(h^2(x)+1)^2}$? $a \quad 2h(x)h'(x)/(h^2(x)+1); \quad b \quad -2h(x)h'(x)/(h^2(x)+1)^2; \quad c \quad -4h(x)h'(x)/(h^2(x)+1)^3;$ $a \quad -2h(x)h'(x)/(h^2(x)+1).$
- 7. Per quale valore del parametro α la funzione $f(x) = \begin{cases} (\sqrt{1+\alpha x}-1)/x & \text{se } x<0 \\ (x-2)/(x+2) & \text{se } x\geq 0 \end{cases}$ è continua nel punto $x_0=0$? $\boxed{a} \ \alpha=1/2; \ \boxed{b} \ \alpha=-1/2; \ \boxed{c} \ \alpha=-2; \ \boxed{d} \ \alpha=2.$
- 8. Sia $h: \mathbf{R} \to \mathbf{R}$ continua. Quale delle seguenti affermazioni è sempre vera? a Se h è due volte derivabile e x_0 è un punto di massimo relativo per h allora $h''(x_0) < 0$; b Se h è due volte derivabile e $h''(x_0) < 0$ allora x_0 è un punto di massimo relativo; c Se h è due volte derivabile e $h'(x_0) = h''(x_0) = 0$ allora x_0 non è nè massimo nè minimo relativo; d Se, per ogni x, h(x) > 0 e se $\lim_{x \to -\infty} h(x) = \lim_{x \to +\infty} h(x) = 0$ allora h ha massimo in \mathbf{R} .
- 9. Per quale valore del parametro β la funzione $g(x) = \begin{cases} x^2 + 2\beta x & \text{se } x < 0 \\ \log(1-x) & \text{se } x \ge 0 \end{cases}$ è derivabile nel punto $x_0 = 0$? \boxed{a} 2; \boxed{b} -3; \boxed{c} -1/2; \boxed{d} 1/2.
- 10. Per quale valore del parametro γ l'equazione $e^x = 5x + \gamma$ ha due soluzioni distinte? $a \quad \gamma < -5 \ln 5$; $b \quad \gamma < 5 + 5 \ln 5$; $c \quad \gamma > 5 5 \ln 5$; $d \quad \gamma > -5$.

- 2. Quanti punti di annullamento (distinti) ha la funzione $f(x) = x^3 3x^2 + x$? \boxed{a} 1; \boxed{b} 2: \boxed{c} nessuno; \boxed{d} 3.
- 3. Per quale valore del parametro α la funzione $f(x) = \begin{cases} \sin(\alpha x)/x & \text{se } x < 0 \\ (x+1)/(x+2) & \text{se } x \ge 0 \end{cases}$ è continua nel punto $x_0 = 0$? $\boxed{a} \quad \alpha = -1/2$; $\boxed{b} \quad \alpha = -2$; $\boxed{c} \quad \alpha = 2$; $\boxed{d} \quad \alpha = 1/2$.
- 4. Per quale valore del parametro β la funzione $g(x) = \begin{cases} x^2 + \beta x & \text{se } x < 0 \\ \log(1+2x) & \text{se } x \ge 0 \end{cases}$ è derivabile nel punto $x_0 = 0$? \boxed{a} -3; \boxed{b} -1/2; \boxed{c} 1/2; \boxed{d} 2.
- 5. Siano $f(x) = \frac{x-1}{x+1}$ e $g(y) = \sqrt{y+2}$. Qual è l'insieme dove è definita la funzione composta $(g \circ f)(x)$? a [-3,-1); b $(-\infty,-1) \cup [0,+\infty)$; c (-1,-1/3]; d $(-\infty,-1) \cup [-1/3,+\infty)$.
- 6. Sia $f: \mathbf{R} \to \mathbf{R}$ continua. Quale delle seguenti affermazioni è sempre vera? \boxed{a} Se f è due volte derivabile e $f''(x_0) > 0$ allora x_0 è un punto di minimo relativo; \boxed{b} Se f è due volte derivabile e $f'(x_0) = f''(x_0) = 0$ allora x_0 non è nè massimo nè minimo relativo; \boxed{c} Se, per ogni x, f(x) < 0 e se $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = 0$ allora f ha minimo in \mathbf{R} ; \boxed{d} Se f è due volte derivabile e x_0 è un punto di minimo relativo per f allora $f''(x_0) > 0$.
- 7. Sia $f(x) = \sqrt{x^2 + 1} (x + \sin(\pi x))$. Allora $f'(1) = a 12 4\pi$; $b \frac{\pi}{2}$; $c \frac{3 + 2\pi}{\sqrt{2}}$; $d \frac{3 2\pi}{\sqrt{2}}$.
- 8. Sia $f: \mathbf{R} \to \mathbf{R}$ continua e derivabile. Se f(0) = 0 e f'(0) > 0 allora il grafico di $\frac{1 f(x)}{f(x) + 1}$ vicino all'origine è:



- 9. Per quale valore del parametro m l'equazione $e^x = 2x + m$ ha due soluzioni distinte? $a m < 2 + 2 \ln 2$; $b m > 2 2 \ln 2$; c m > -2; $d m < -2 \ln 2$.
- 10. Sia $f:[0,1] \to \mathbf{R}$. Quale delle seguenti affermazioni è necessariamente vera? \boxed{a} Se f(0)=f(1)=100 allora l'equazione f(x)=0 non ha soluzioni in [0,1]; \boxed{b} Se, per ogni x, f'(x)>0 allora f è invertibile in [0,1]; \boxed{c} Se, per ogni x, f'(x)>0 allora l'equazione f(x)=1/2 ha una soluzione in [0,1]; \boxed{d} Se f ha massimo e minimo in [0,1] allora f è continua in [0,1].

- 1. Sia $g: \mathbf{R} \to \mathbf{R}$ continua. Quale delle seguenti affermazioni è sempre vera? \boxed{a} Se g è due volte derivabile e $g'(x_0) = g''(x_0) = 0$ allora x_0 non è nè massimo nè minimo relativo; \boxed{b} Se, per ogni x, g(x) > 0 e se $\lim_{x \to -\infty} g(x) = \lim_{x \to +\infty} g(x) = 0$ allora g ha massimo in \mathbf{R} ; \boxed{c} Se g è due volte derivabile e x_0 è un punto di massimo relativo per g allora $g''(x_0) < 0$; \boxed{d} Se g è due volte derivabile e $g''(x_0) < 0$ allora x_0 è un punto di massimo relativo.
- 2. Per quale valore del parametro α la funzione $f(x) = \begin{cases} \log(1+\alpha x)/x & \text{se } x < 0 \\ (x-1)/(x+2) & \text{se } x \ge 0 \end{cases}$ è continua nel punto $x_0 = 0$? \boxed{a} $\alpha = -2$; \boxed{b} $\alpha = 2$; \boxed{c} $\alpha = 1/2$; \boxed{d} $\alpha = -1/2$.
- 3. Sia $f(x) = (1+x^2)^2 (x + \sin(\pi x))$. Allora $f'(1) = a \frac{\pi}{2}$; $b = \frac{3+2\pi}{\sqrt{2}}$; $c = \frac{3-2\pi}{\sqrt{2}}$; $d = 12-4\pi$.
- 4. Per quale valore del parametro α l'equazione $e^x = 3x + \alpha$ ha due soluzioni distinte? $\boxed{a} \quad \alpha > 3 3 \ln 3; \quad \boxed{b} \quad \alpha > -3; \quad \boxed{c} \quad \alpha < -3 \ln 3; \quad \boxed{d} \quad \alpha < 3 + 3 \ln 3.$
- 5. Sia h(x) una funzione derivabile. Quale è la derivata di $\frac{1}{h^2(x)+1}$? $a -4h(x)h'(x)/(h^2(x)+1)^3$; $b -2h(x)h'(x)/(h^2(x)+1)$; $c 2h(x)h'(x)/(h^2(x)+1)$; $d -2h(x)h'(x)/(h^2(x)+1)^2$.
- 6. Sia $g: \mathbf{R} \to \mathbf{R}$ continua e derivabile. Se g(0) = 0 e g'(0) < 0 allora il grafico di $\frac{1 g(x)}{g^2(x) + 1}$ vicino all'origine è:

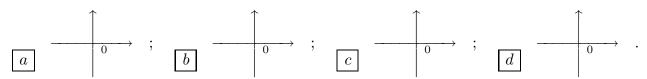


- 7. Per quale valore del parametro β la funzione $g(x) = \begin{cases} x^2 \beta x & \text{se } x < 0 \\ \log(1+3x) & \text{se } x \ge 0 \end{cases}$ è derivabile nel punto $x_0 = 0$? \boxed{a} -1/2; \boxed{b} 1/2; \boxed{c} 2; \boxed{d} -3.
- 9. Sia $g:[0,1] \to \mathbf{R}$. Quale delle seguenti affermazioni è necessariamente vera? \boxed{a} Se, per ogni x, g'(x) < 0 allora g è invertibile in [0,1]; \boxed{b} Se, per ogni x, g'(x) < 0 allora l'equazione g(x) = 1/2 ha una soluzione in [0,1]; \boxed{c} Se g ha massimo e minimo in [0,1] allora g è continua in [0,1]; \boxed{d} Se g(0) = g(1) = 100 allora l'equazione g(x) = 0 non ha soluzioni in [0,1].
- 10. Siano $f(x) = \frac{x-1}{x+1}$ e $g(y) = \sqrt{y-2}$. Qual è l'insieme dove è definita la funzione composta $(g \circ f)(x)$? $a (-\infty, -1) \cup [0, +\infty)$; b (-1, -1/3]; $c (-\infty, -1) \cup [-1/3, +\infty)$; d [-3, -1).

CALCOLO 1 - Test 1 B

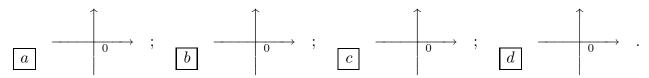
26 ottobre 2004

1. Sia $h : \mathbf{R} \to \mathbf{R}$ continua e derivabile. Se h(0) = 0 e h'(0) > 0 allora il grafico di $\frac{-1 + h(x)}{h(x) + 1}$ vicino all'origine è:



- 2. Sia $f(x) = \frac{1}{1+x^2}(x+\sin(\pi x))$. Allora $f'(1) = a \frac{3+2\pi}{\sqrt{2}}$; $b \frac{3-2\pi}{\sqrt{2}}$; $c 12-4\pi$; $d -\frac{\pi}{2}$.
- 3. Per quale valore del parametro β la funzione $g(x) = \begin{cases} x^2 + 2\beta x & \text{se } x < 0 \\ \log(1-x) & \text{se } x \ge 0 \end{cases}$ è derivabile nel punto $x_0 = 0$? \boxed{a} 1/2; \boxed{b} 2; \boxed{c} -3; \boxed{d} -1/2.
- 4. Sia $h:[0,1]\to \mathbf{R}$. Quale delle seguenti affermazioni è necessariamente vera? \boxed{a} Se, per ogni x,h'(x)>0 allora l'equazione h(x)=1/2 ha una soluzione in [0,1]; \boxed{b} Se h ha massimo e minimo in [0,1] allora h è continua in [0,1]; \boxed{c} Se h(0)=h(1)=100 allora l'equazione h(x)=0 non ha soluzioni in [0,1]; \boxed{d} Se, per ogni x,h'(x)>0 allora h è invertibile in [0,1].
- 5. Sia $h: \mathbf{R} \to \mathbf{R}$ continua. Quale delle seguenti affermazioni è sempre vera? a Se, per ogni x, h(x) < 0 e se $\lim_{x \to -\infty} h(x) = \lim_{x \to +\infty} h(x) = 0$ allora h ha minimo in \mathbf{R} ; b Se h è due volte derivabile e x_0 è un punto di minimo relativo per h allora $h''(x_0) > 0$; c Se h è due volte derivabile e $h''(x_0) > 0$ allora x_0 è un punto di minimo relativo; a Se b è due volte derivabile e $b''(x_0) = b''(x_0) = 0$ allora a0 non è nè massimo nè minimo relativo.
- 6. Quanti punti di annullamento (distinti) ha la funzione $f(x) = x^3 4x^2 + 4x$? \boxed{a} nessuno; \boxed{b} 3; \boxed{c} 1; \boxed{d} 2.
- 7. Per quale valore del parametro β l'equazione $e^x = 5x + \beta$ ha due soluzioni distinte? \boxed{a} $\beta > -5$; \boxed{b} $\beta < -5 \ln 5$; \boxed{c} $\beta < 5 + 5 \ln 5$; \boxed{d} $\beta > 5 5 \ln 5$.
- 8. Per quale valore del parametro α la funzione $f(x) = \begin{cases} (\sqrt{1+\alpha x}-1)/x & \text{se } x<0\\ (x-2)/(x+2) & \text{se } x\geq 0 \end{cases}$ è continua nel punto $x_0=0$? $\boxed{a} \ \alpha=2; \ \boxed{b} \ \alpha=1/2; \ \boxed{c} \ \alpha=-1/2; \ \boxed{d} \ \alpha=-2.$
- 9. Siano $f(x) = \frac{x-1}{x+1}$ e $g(y) = \sqrt{y+1}$. Qual è l'insieme dove è definita la funzione composta $(g \circ f)(x)$? a (-1,-1/3]; $b (-\infty,-1) \cup [-1/3,+\infty)$; c [-3,-1); $d (-\infty,-1) \cup [0,+\infty)$.

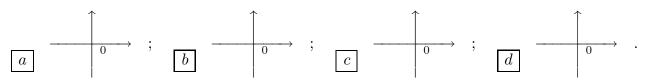
- 1. Quanti punti di annullamento (distinti) ha la funzione $f(x) = x^3 3x^2 + x$? \boxed{a} 3; \boxed{b} 1; \boxed{c} 2; \boxed{d} nessuno.
- 2. Per quale valore del parametro β la funzione $g(x) = \begin{cases} x^2 + \beta x & \text{se } x < 0 \\ \log(1+2x) & \text{se } x \ge 0 \end{cases}$ è derivabile nel punto $x_0 = 0$? \boxed{a} 2; \boxed{b} -3; \boxed{c} -1/2; \boxed{d} 1/2.
- 3. Per quale valore del parametro γ l'equazione $e^x = 2x + \gamma$ ha due soluzioni distinte? \boxed{a} $\gamma < -2 \ln 2; \boxed{b}$ $\gamma < 2 + 2 \ln 2; \boxed{c}$ $\gamma > 2 2 \ln 2; \boxed{d}$ $\gamma > -2.$
- 4. Siano $f(x) = \frac{x-1}{x+1}$ e $g(y) = \sqrt{y+2}$. Qual è l'insieme dove è definita la funzione composta $(g \circ f)(x)$? $a (-\infty, -1) \cup [-1/3, +\infty)$; b [-3, -1); $c (-\infty, -1) \cup [0, +\infty)$; d (-1, -1/3].
- 5. Sia $f: \mathbf{R} \to \mathbf{R}$ continua e derivabile. Se f(0) = 0 e f'(0) < 0 allora il grafico di $\frac{1 f(x)}{f(x) + 1}$ vicino all'origine è:



- 6. Per quale valore del parametro α la funzione $f(x) = \begin{cases} \sin(\alpha x)/x & \text{se } x < 0 \\ (x+1)/(x+2) & \text{se } x \ge 0 \end{cases}$ è continua nel punto $x_0 = 0$? \boxed{a} $\alpha = 1/2$; \boxed{b} $\alpha = -1/2$; \boxed{c} $\alpha = -2$; \boxed{d} $\alpha = 2$.
- 7. Sia $f:[0,1] \to \mathbf{R}$. Quale delle seguenti affermazioni è necessariamente vera? \boxed{a} Se f ha massimo e minimo in [0,1] allora f è continua in [0,1]; \boxed{b} Se f(0)=f(1)=100 allora l'equazione f(x)=0 non ha soluzioni in [0,1]; \boxed{c} Se, per ogni x, f'(x)<0 allora f è invertibile in [0,1]; \boxed{d} Se, per ogni x, f'(x)<0 allora l'equazione f(x)=1/2 ha una soluzione in [0,1].
- 8. Sia $f(x) = \sqrt{x^2 + 1} (x + \sin(\pi x))$. Allora $f'(1) = a \frac{3 2\pi}{\sqrt{2}}$; $b 12 4\pi$; $c \frac{\pi}{2}$; $d \frac{3 + 2\pi}{\sqrt{2}}$.
- 9. Sia h(x) una funzione derivabile. Quale è la derivata di $\log(h^2(x) + 1)$?

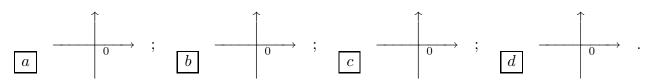
 [a] $2h(x)h'(x)/(h^2(x) + 1)$; [b] $-2h(x)h'(x)/(h^2(x) + 1)^2$; [c] $-4h(x)h'(x)/(h^2(x) + 1)^3$; [d] $-2h(x)h'(x)/(h^2(x) + 1)$.
- 10. Sia $f: \mathbf{R} \to \mathbf{R}$ continua. Quale delle seguenti affermazioni è sempre vera? \boxed{a} Se f è due volte derivabile e x_0 è un punto di massimo relativo per f allora $f''(x_0) < 0$; \boxed{b} Se f è due volte derivabile e $f''(x_0) < 0$ allora x_0 è un punto di massimo relativo; \boxed{c} Se f è due volte derivabile e $f'(x_0) = f''(x_0) = 0$ allora x_0 non è nè massimo nè minimo relativo; \boxed{d} Se, per ogni x, f(x) > 0 e se $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = 0$ allora f ha massimo in \mathbf{R} .

- 1. Per quale valore del parametro α la funzione $f(x) = \begin{cases} \log(1+\alpha x)/x & \text{se } x < 0 \\ (x-1)/(x+2) & \text{se } x \ge 0 \end{cases}$ è continua nel punto $x_0 = 0$? \boxed{a} $\alpha = -1/2$; \boxed{b} $\alpha = -2$; \boxed{c} $\alpha = 2$; \boxed{d} $\alpha = 1/2$.
- 2. Per quale valore del parametro m l'equazione $e^x = 3x + m$ ha due soluzioni distinte? \boxed{a} $m < 3 + 3 \ln 3$; \boxed{b} $m > 3 3 \ln 3$; \boxed{c} m > -3; \boxed{d} $m < -3 \ln 3$.
- 3. Sia $g:[0,1] \to \mathbf{R}$. Quale delle seguenti affermazioni è necessariamente vera? \boxed{a} Se g(0)=g(1)=100 allora l'equazione g(x)=0 non ha soluzioni in [0,1]; \boxed{b} Se, per ogni $x,\,g'(x)>0$ allora g è invertibile in [0,1]; \boxed{c} Se, per ogni $x,\,g'(x)>0$ allora l'equazione g(x)=1/2 ha una soluzione in [0,1]; \boxed{d} Se g ha massimo e minimo in [0,1] allora g è continua in [0,1].
- 4. Sia h(x) una funzione derivabile. Quale è la derivata di $\frac{1}{h^2(x)+1}$? $a -2h(x)h'(x)/(h^2(x)+1)^2$; $b -4h(x)h'(x)/(h^2(x)+1)^3$; $c -2h(x)h'(x)/(h^2(x)+1)$; $d 2h(x)h'(x)/(h^2(x)+1)$.
- 5. Quanti punti di annullamento (distinti) ha la funzione $f(x) = x^3 3x^2 + 3x$? \boxed{a} 1; \boxed{b} 2; \boxed{c} nessuno; \boxed{d} 3.
- 6. Sia $f(x) = (1 + x^2)^2 (x + \sin(\pi x))$. Allora $f'(1) = a 12 4\pi$; $b \frac{\pi}{2}$; $c \frac{3 + 2\pi}{\sqrt{2}}$; $d \frac{3 2\pi}{\sqrt{2}}$.
- 7. Siano $f(x) = \frac{x-1}{x+1}$ e $g(y) = \sqrt{y-2}$. Qual è l'insieme dove è definita la funzione composta $(g \circ f)(x)$? a = [-3, -1); $b = (-\infty, -1) \cup [0, +\infty)$; c = (-1, -1/3); $b = (-\infty, -1) \cup [-1/3, +\infty)$.
- 8. Per quale valore del parametro β la funzione $g(x) = \begin{cases} x^2 \beta x & \text{se } x < 0 \\ \log(1+3x) & \text{se } x \ge 0 \end{cases}$ è derivabile nel punto $x_0 = 0$? \boxed{a} -3; \boxed{b} -1/2; \boxed{c} 1/2; \boxed{d} 2.
- 9. Sia $g: \mathbf{R} \to \mathbf{R}$ continua. Quale delle seguenti affermazioni è sempre vera? \boxed{a} Se g è due volte derivabile e $g''(x_0) > 0$ allora x_0 è un punto di minimo relativo; \boxed{b} Se g è due volte derivabile e $g'(x_0) = g''(x_0) = 0$ allora x_0 non è nè massimo nè minimo relativo; \boxed{c} Se, per ogni x, g(x) < 0 e se $\lim_{x \to -\infty} g(x) = \lim_{x \to +\infty} g(x) = 0$ allora g ha minimo in \mathbf{R} ; \boxed{d} Se g è due volte derivabile e x_0 è un punto di minimo relativo per g allora $g''(x_0) > 0$.
- 10. Sia $g: \mathbf{R} \to \mathbf{R}$ continua e derivabile. Se g(0) = 0 e g'(0) > 0 allora il grafico di $\frac{1 g(x)}{g^2(x) + 1}$ vicino all'origine è:



1. Sia
$$f(x) = \frac{1}{1+x^2}(x+\sin(\pi x))$$
. Allora $f'(1) = [a] -\frac{\pi}{2}$; $[b] \frac{3+2\pi}{\sqrt{2}}$; $[c] \frac{3-2\pi}{\sqrt{2}}$; $[d] 12-4\pi$.

- 2. Sia $h:[0,1] \to \mathbf{R}$. Quale delle seguenti affermazioni è necessariamente vera? \boxed{a} Se, per ogni x, h'(x) < 0 allora h è invertibile in [0,1]; \boxed{b} Se, per ogni x, h'(x) < 0 allora l'equazione h(x) = 1/2 ha una soluzione in [0,1]; \boxed{c} Se h ha massimo e minimo in [0,1] allora h è continua in [0,1]; \boxed{d} Se h(0) = h(1) = 100 allora l'equazione h(x) = 0 non ha soluzioni in [0,1].
- 3. Siano $f(x) = \frac{x-1}{x+1}$ e $g(y) = \sqrt{y+1}$. Qual è l'insieme dove è definita la funzione composta $(g \circ f)(x)$? $a (-\infty, -1) \cup [0, +\infty)$; b (-1, -1/3]; $c (-\infty, -1) \cup [-1/3, +\infty)$; d [-3, -1).
- 4. Sia $h: \mathbf{R} \to \mathbf{R}$ continua. Quale delle seguenti affermazioni è sempre vera? \boxed{a} Se h è due volte derivabile e $h'(x_0) = h''(x_0) = 0$ allora x_0 non è nè massimo nè minimo relativo; \boxed{b} Se, per ogni x, h(x) > 0 e se $\lim_{x \to -\infty} h(x) = \lim_{x \to +\infty} h(x) = 0$ allora h ha massimo in \mathbf{R} ; \boxed{c} Se h è due volte derivabile e x_0 è un punto di massimo relativo per h allora $h''(x_0) < 0$; \boxed{d} Se h è due volte derivabile e $h''(x_0) < 0$ allora x_0 è un punto di massimo relativo.
- 5. Per quale valore del parametro α la funzione $f(x) = \begin{cases} (\sqrt{1+\alpha x}-1)/x & \text{se } x < 0 \\ (x-2)/(x+2) & \text{se } x \geq 0 \end{cases}$ è continua nel punto $x_0 = 0$? $\boxed{a} \quad \alpha = -2$; $\boxed{b} \quad \alpha = 2$; $\boxed{c} \quad \alpha = 1/2$; $\boxed{d} \quad \alpha = -1/2$.
- 6. Per quale valore del parametro β la funzione $g(x) = \begin{cases} x^2 + 2\beta x & \text{se } x < 0 \\ \log(1-x) & \text{se } x \ge 0 \end{cases}$ è derivabile nel punto $x_0 = 0$? \boxed{a} -1/2; \boxed{b} 1/2; \boxed{c} 2; \boxed{d} -3.
- 7. Sia h(x) una funzione derivabile. Quale è la derivata di $\frac{1}{(h^2(x)+1)^2}$? $a -4h(x)h'(x)/(h^2(x)+1)^3$; $b -2h(x)h'(x)/(h^2(x)+1)$; $c 2h(x)h'(x)/(h^2(x)+1)$; $d -2h(x)h'(x)/(h^2(x)+1)^2$.
- 8. Per quale valore del parametro α l'equazione $e^x = 5x + \alpha$ ha due soluzioni distinte? \boxed{a} $\alpha > 5 5 \ln 5$; \boxed{b} $\alpha > -5$; \boxed{c} $\alpha < -5 \ln 5$; \boxed{d} $\alpha < 5 + 5 \ln 5$.
- 9. Sia $h : \mathbf{R} \to \mathbf{R}$ continua e derivabile. Se h(0) = 0 e h'(0) < 0 allora il grafico di $\frac{-1 + h(x)}{h(x) + 1}$ vicino all'origine è:



10. Quanti punti di annullamento (distinti) ha la funzione $f(x)=x^3-4x^2+4x?$ a 2; b nessuno; c 3; d 1.