CALCOLO 1		19 luglio 2005
Cognome:	Nome:	Matricola:

1. Sia $f(x) = |\log(\frac{x}{2})|$ per x > 1 e f(x) = ax + b per $x \le 1$. Per quali valori a, b la funzione f è continua e derivabile per x = 1? $a = -\frac{1}{2}, b = \frac{1}{2} + \log \frac{1}{2}$; $b = \frac{1}{2}, b = -\frac{1}{2} + \log 2$; $c = -1, b = 1 + \log 2$; $d = -\frac{1}{2}, b = 1 + \log 2$.

2.

$$\int_0^2 x f(x^2) \ dx =$$

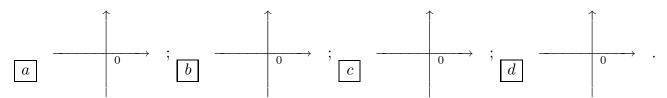
 $\boxed{a} \ f(4) - \int_0^2 x^3 f(x^2) \ dx; \quad \boxed{b} \ 2 \int_0^2 f(t) \ dt; \quad \boxed{c} \ \frac{1}{2} \int_0^2 f(t) \ dt; \quad \boxed{d} \ 2 f(4) - \int_0^2 x^3 f'(x^2) \ dx.$

- 3. Se y(x) è la soluzione di $\begin{cases} y' = 4x^3y \\ y(0) = e \end{cases}$ allora $y(1) = \boxed{a} e^3; \boxed{b} e^2; \boxed{c} 3e^4; \boxed{d} 4e^3.$
- 4. La serie numerica: $\sum_{n=1}^{+\infty} \frac{n!}{2^n}$ a è oscillante; b è convergente con somma = 2; c è convergente con somma > 2; d è divergente.
- 5. L'insieme di tutti i valori di $\alpha \in \mathbf{R}$ per i quali l'integrale generalizzato

$$\int_0^{+\infty} x^{\alpha} 2^{-x} dx$$

è convergente, è: $a (-\infty, \frac{1}{2}); b (2, +\infty); c \mathbf{R}; d (-1, +\infty).$

- 6. Sia $f: \mathbf{R} \to \mathbf{R}$. La frase: $\forall \varepsilon > 0, \exists \delta > 0$ tale che $|x-2| < \delta$ implica $|f(x) f(2)| < \varepsilon$ è la definizione di a f'(2) = 0; b 2 è un punto di massimo locale per f; c f è continua in $x_0 = 2$; d f(x) = f(2), $\forall x \in \mathbf{R}$.
- 7. Sia z = 1 + i. Allora $\frac{1}{z} = [a] 1 i$; $[b] \sqrt{2}(1 i)$; $[c] \frac{1}{\sqrt{2}}(1 + i)$; $[d] \frac{1}{2}(1 i)$.
- 8. Sia f una funzione due volte derivabile con continuità. Se f(0) = f'(0) = 1 e f''(0) = 4, allora il grafico di $g(x) := \frac{1}{f(x)}$ vicino a x = 0 è:

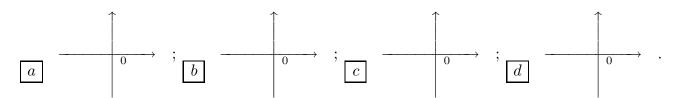


CALCOLO 1		19 luglio 2005
Cognome:	Nome:	Matricola:

- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia $f: \mathbf{R} \to \mathbf{R}$. La frase: $\forall \varepsilon > 0, \exists \delta > 0$ tale che $|x-3| < \delta$ implica $|f(x) f(3)| < \varepsilon$ è la definizione di \boxed{a} 3 è un punto di massimo locale per f; \boxed{b} f è continua in $x_0 = 3$; \boxed{c} f(x) = f(3), $\forall x \in \mathbf{R}$; \boxed{d} f'(3) = 0.
- 2. Se y(x) è la soluzione di $\begin{cases} y' = 5x^4y \\ y(0) = e \end{cases}$ allora $y(1) = \begin{bmatrix} a \end{bmatrix} e^2$; $\begin{bmatrix} b \end{bmatrix} 4e^5$; $\begin{bmatrix} c \end{bmatrix} 5e^4$; $\begin{bmatrix} d \end{bmatrix} e^4$.
- 3. La serie numerica: $\sum_{n=1}^{+\infty} \frac{3^n}{n!}$ a è convergente con somma = 3; b è convergente con somma > 3; c è divergente; d è oscillante.
- 4. Sia z = 1 + 2i. Allora $\frac{1}{z} = a \sqrt{5}(1 2i); b \frac{1}{\sqrt{5}}(1 + 2i); c \frac{1}{5}(1 2i); d 1 2i$.
- 5. Sia $f(x) = |\log(\frac{x}{3})|$ per x > 1 e f(x) = ax + b per $x \le 1$. Per quali valori a, b la funzione f è continua e derivabile per x = 1? $a = \frac{1}{3}, b = -\frac{1}{3} + \log 3$; $b = -1, b = 1 + \log 3$; $a = -\frac{1}{3}, b = 1 + \log 3$; $a = -\frac{1}{3}, b = \frac{1}{3} + \log \frac{1}{3}$.
- 6.

$$\int_0^2 x f(x^2) \ dx =$$

- a $2\int_0^2 f(t) dt$; b $\frac{1}{2}\int_0^2 f(t) dt$; c $2f(4) \int_0^2 x^3 f'(x^2) dx$; d $f(4) \int_0^2 x^3 f(x^2) dx$.
- 7. Sia f una funzione due volte derivabile con continuità. Se f(0) = f'(0) = 1 e f''(0) = 1, allora il grafico di $g(x) := \frac{1}{f(x)}$ vicino a x = 0 è:



8. L'insieme di tutti i valori di $\alpha \in \mathbf{R}$ per i quali l'integrale generalizzato

$$\int_0^{+\infty} x^{\alpha} 3^{-x} \ dx$$

è convergente, è: a $(3, +\infty)$; b \mathbf{R} ; c $(-1, +\infty)$; d $(-\infty, \frac{1}{3})$.

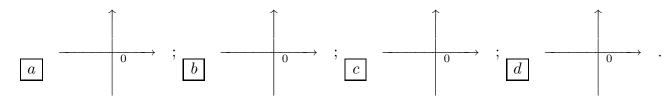
CALCOLO 1		19 luglio 2005
Cognome:	Nome:	Matricola:

1.

$$\int_0^2 x f(x^2) \ dx =$$

 $\boxed{a} \ \ \tfrac{1}{2} \int_0^2 f(t) \ dt; \ \ \boxed{b} \ \ 2f(4) - \int_0^2 x^3 f'(x^2) \ dx; \ \ \boxed{c} \ \ f(4) - \int_0^2 x^3 f(x^2) \ dx; \ \ \boxed{d} \ \ 2 \int_0^2 f(t) \ dt.$

- 2. La serie numerica: $\sum_{n=1}^{+\infty} \frac{n!}{4^n}$ a è convergente con somma > 4; b è divergente; c è oscillante; d è convergente con somma = 4.
- 3. Sia z = 1 i. Allora $\frac{1}{z} = a$ $\frac{1}{\sqrt{2}}(1 i)$; b $\frac{1}{2}(1 + i)$; c 1 + i; d $\sqrt{2}(1 + i)$.
- 4. Sia f una funzione due volte derivabile con continuità. Se f(0) = f'(0) = 1 e f''(0) = 4, allora il grafico di $g(x) := \frac{1}{f(x)}$ vicino a x = 0 è:



- 5. Sia $f: \mathbf{R} \to \mathbf{R}$. La frase: $\forall \varepsilon > 0, \exists \delta > 0$ tale che $|x 4| < \delta$ implica $|f(x) f(4)| < \varepsilon$ è la definizione di \boxed{a} f è continua in $x_0 = 4$; \boxed{b} f(x) = f(4), $\forall x \in \mathbf{R}$; \boxed{c} f'(4) = 0; \boxed{d} 4 è un punto di massimo locale per f.
- 6. Se y(x) è la soluzione di $\begin{cases} y' = 6x^5y \\ y(0) = e \end{cases}$ allora $y(1) = \boxed{a} \ 5e^6; \boxed{b} \ 6e^5; \boxed{c} \ e^5; \boxed{d} \ e^2.$
- 7. L'insieme di tutti i valori di $\alpha \in \mathbf{R}$ per i quali l'integrale generalizzato

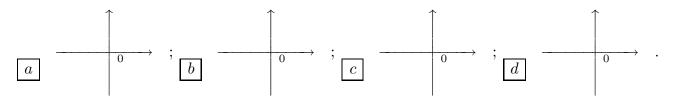
$$\int_0^{+\infty} x^{\alpha} 4^{-x} \ dx$$

è convergente, è: a \mathbf{R} ; b $(-1, +\infty)$; c $(-\infty, \frac{1}{4})$; d $(4, +\infty)$.

8. Sia $f(x) = |\log(\frac{x}{4})|$ per x > 1 e f(x) = ax + b per $x \le 1$. Per quali valori a, b la funzione f è continua e derivabile per x = 1? $a = -1, b = 1 + \log 4$; $b = -\frac{1}{4}, b = 1 + \log 4$; $c = -\frac{1}{4}, b = \frac{1}{4} + \log \frac{1}{4}$; $d = -\frac{1}{4}, b = -\frac{1}{4} + \log 4$.

CALCOLO 1		19 luglio 2005
Cognome:	Nome:	Matricola:

- 1. Se y(x) è la soluzione di $\begin{cases} y' = 7x^6y \\ y(0) = e \end{cases}$ allora $y(1) = \boxed{a} \ 7e^6; \boxed{b} \ e^6; \boxed{c} \ e^2; \boxed{d} \ 6e^7.$
- 2. Sia z = 1 2i. Allora $\frac{1}{z} = a \frac{1}{5}(1 + 2i); b 1 + 2i; c <math>\sqrt{5}(1 + 2i); d \frac{1}{\sqrt{5}}(1 2i).$
- 3. Sia f una funzione due volte derivabile con continuità. Se f(0) = f'(0) = 1 e f''(0) = 1, allora il grafico di $g(x) := \frac{1}{f(x)}$ vicino a x = 0 è:



4. L'insieme di tutti i valori di $\alpha \in \mathbf{R}$ per i quali l'integrale generalizzato

$$\int_0^{+\infty} x^{\alpha} 5^{-x} dx$$

è convergente, è: a $(-1, +\infty)$; b $(-\infty, \frac{1}{5})$; c $(5, +\infty)$; d R.

5.

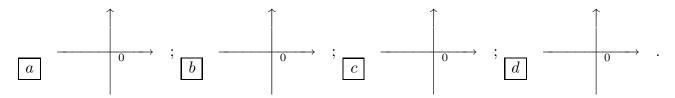
$$\int_0^2 x f(x^2) \ dx =$$

a $2f(4) - \int_0^2 x^3 f'(x^2) dx$; b $f(4) - \int_0^2 x^3 f(x^2) dx$; c $2\int_0^2 f(t) dt$; d $\frac{1}{2}\int_0^2 f(t) dt$.

- 6. La serie numerica: $\sum_{n=1}^{+\infty} \frac{5^n}{n!}$ a è divergente; b è oscillante; c è convergente con somma = 5; d è convergente con somma > 5.
- 7. Sia $f(x) = |\log(\frac{x}{5})|$ per x > 1 e f(x) = ax + b per $x \le 1$. Per quali valori a, b la funzione f è continua e derivabile per x = 1? \boxed{a} $a = -\frac{1}{5}, b = 1 + \log 5;$ \boxed{b} $a = -\frac{1}{5}, b = \frac{1}{5} + \log \frac{1}{5};$ \boxed{c} $a = \frac{1}{5}, b = -\frac{1}{5} + \log 5;$ \boxed{d} $a = -1, b = 1 + \log 5.$
- 8. Sia $f: \mathbf{R} \to \mathbf{R}$. La frase: $\forall \varepsilon > 0, \exists \delta > 0$ tale che $|x 5| < \delta$ implica $|f(x) f(5)| < \varepsilon$ è la definizione di a $f(x) = f(5), \quad \forall x \in \mathbf{R}; \quad b$ $f'(5) = 0; \quad c$ 5 è un punto di massimo locale per f; a f è continua in $x_0 = 5$.

CALCOLO 1		19 luglio 2005
Cognome:	Nome:	Matricola:

- 1. La serie numerica: $\sum_{n=1}^{+\infty} \frac{n!}{6^n}$ a è oscillante; b è convergente con somma = 6; c è convergente con somma > 6; d è divergente.
- 2. Sia f una funzione due volte derivabile con continuità. Se f(0) = f'(0) = 1 e f''(0) = 4, allora il grafico di $g(x) := \frac{1}{f(x)}$ vicino a x = 0 è:



3. L'insieme di tutti i valori di $\alpha \in \mathbf{R}$ per i quali l'integrale generalizzato

$$\int_0^{+\infty} x^{\alpha} 6^{-x} \ dx$$

è convergente, è: a $(-\infty, \frac{1}{6});$ b $(6, +\infty);$ c $\mathbf{R};$ d $(-1, +\infty).$

- 4. Sia $f(x) = |\log(\frac{x}{7})|$ per x > 1 e f(x) = ax + b per $x \le 1$. Per quali valori a, b la funzione f è continua e derivabile per x = 1? \boxed{a} $a = -\frac{1}{7}, b = \frac{1}{7} + \log \frac{1}{7};$ \boxed{b} $a = \frac{1}{7}, b = -\frac{1}{7} + \log 7;$ \boxed{c} $a = -1, b = 1 + \log 7;$ \boxed{d} $a = -\frac{1}{7}, b = 1 + \log 7.$
- 5. Se y(x) è la soluzione di $\begin{cases} y' = 4x^3y \\ y(0) = e \end{cases}$ allora $y(1) = \begin{bmatrix} a \end{bmatrix} e^3$; $b \end{bmatrix} e^2$; $c \end{bmatrix} 3e^4$; $d \end{bmatrix} 4e^3$.
- 6. Sia z = 1 + i. Allora $\frac{1}{z} = [a] 1 i$; $[b] \sqrt{2}(1 i)$; $[c] \frac{1}{\sqrt{2}}(1 + i)$; $[d] \frac{1}{2}(1 i)$.
- 7. Sia $f: \mathbf{R} \to \mathbf{R}$. La frase: $\forall \varepsilon > 0, \exists \delta > 0$ tale che $|x 6| < \delta$ implica $|f(x) f(6)| < \varepsilon$ è la definizione di a f'(6) = 0; b 6 è un punto di massimo locale per f; c f è continua in $x_0 = 6$; d f(x) = f(6), $\forall x \in \mathbf{R}$.

$$\int_0^2 x f(x^2) \ dx =$$

 $\boxed{a} \ f(4) - \int_0^2 x^3 f(x^2) \ dx; \quad \boxed{b} \ 2 \int_0^2 f(t) \ dt; \quad \boxed{c} \ \frac{1}{2} \int_0^2 f(t) \ dt; \quad \boxed{d} \ 2 f(4) - \int_0^2 x^3 f'(x^2) \ dx.$

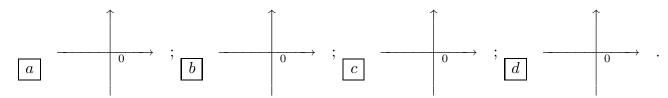
CALCOLO 1		19 luglio 2005
Cognome:	Nome:	Matricola:

- 1. Sia z = 1 + 2i. Allora $\frac{1}{z} = a \sqrt{5}(1 2i); b \frac{1}{\sqrt{5}}(1 + 2i); c \frac{1}{5}(1 2i); d 1 2i$.
- 2. L'insieme di tutti i valori di $\alpha \in \mathbf{R}$ per i quali l'integrale generalizzato

$$\int_0^{+\infty} x^{\alpha} 7^{-x} \ dx$$

è convergente, è: a $(7, +\infty)$; b \mathbf{R} ; c $(-1, +\infty)$; d $(-\infty, \frac{1}{7})$.

- 3. Sia $f(x) = |\log(\frac{x}{6})|$ per x > 1 e f(x) = ax + b per $x \le 1$. Per quali valori a, b la funzione f è continua e derivabile per x = 1? $a = \frac{1}{6}, b = -\frac{1}{6} + \log 6$; $b = -1, b = 1 + \log 6$; $a = -\frac{1}{6}, b = 1 + \log 6$; $a = -\frac{1}{6}, b = 1 + \log 6$; $a = -\frac{1}{6}, b = \frac{1}{6} + \log \frac{1}{6}$.
- 4. Sia $f: \mathbf{R} \to \mathbf{R}$. La frase: $\forall \varepsilon > 0, \exists \delta > 0$ tale che $|x 7| < \delta$ implica $|f(x) f(7)| < \varepsilon$ è la definizione di \boxed{a} 7 è un punto di massimo locale per f; \boxed{b} f è continua in $x_0 = 7$; \boxed{c} f(x) = f(7), $\forall x \in \mathbf{R}$; \boxed{d} f'(7) = 0.
- 5. La serie numerica: $\sum_{n=1}^{+\infty} \frac{7^n}{n!}$ a è convergente con somma = 7; b è convergente con somma > 7; c è divergente; d è oscillante.
- 6. Sia f una funzione due volte derivabile con continuità. Se f(0) = f'(0) = 1 e f''(0) = 1, allora il grafico di $g(x) := \frac{1}{f(x)}$ vicino a x = 0 è:



7.

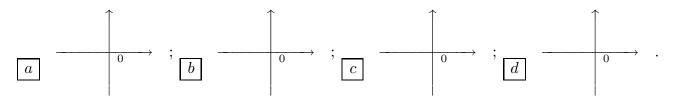
$$\int_0^2 x f(x^2) \ dx =$$

a $2\int_0^2 f(t) dt$; b $\frac{1}{2}\int_0^2 f(t) dt$; c $2f(4) - \int_0^2 x^3 f'(x^2) dx$; d $f(4) - \int_0^2 x^3 f(x^2) dx$.

8. Se y(x) è la soluzione di $\begin{cases} y' = 5x^4y \\ y(0) = e \end{cases}$ allora $y(1) = \begin{bmatrix} a \end{bmatrix} e^2$; $\begin{bmatrix} b \end{bmatrix} 4e^5$; $\begin{bmatrix} c \end{bmatrix} 5e^4$; $\begin{bmatrix} d \end{bmatrix} e^4$.

CALCOLO 1		19 luglio 2005
Cognome:	Nome:	Matricola:

- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia f una funzione due volte derivabile con continuità. Se f(0) = f'(0) = 1 e f''(0) = 4, allora il grafico di $g(x) := \frac{1}{f(x)}$ vicino a x = 0 è:



- 2. Sia $f(x) = |\log(\frac{x}{8})|$ per x > 1 e f(x) = ax + b per $x \le 1$. Per quali valori a, b la funzione f è continua e derivabile per x = 1? \boxed{a} $a = -1, b = 1 + \log 8$; \boxed{b} $a = -\frac{1}{8}, b = 1 + \log 8$; \boxed{c} $a = -\frac{1}{8}, b = \frac{1}{8} + \log \frac{1}{8}$; \boxed{d} $a = \frac{1}{8}, b = -\frac{1}{8} + \log 8$.
- 3. Sia $f: \mathbf{R} \to \mathbf{R}$. La frase: $\forall \varepsilon > 0, \exists \delta > 0$ tale che $|x 8| < \delta$ implica $|f(x) f(8)| < \varepsilon$ è la definizione di \boxed{a} f è continua in $x_0 = 8$; \boxed{b} f(x) = f(8), $\forall x \in \mathbf{R}$; \boxed{c} f'(8) = 0; \boxed{d} 8 è un punto di massimo locale per f.
- 4.

$$\int_0^2 x f(x^2) \ dx =$$

 $\boxed{a} \ \ \tfrac{1}{2} \int_0^2 f(t) \ dt; \ \ \boxed{b} \ \ 2f(4) - \int_0^2 x^3 f'(x^2) \ dx; \ \ \boxed{c} \ \ f(4) - \int_0^2 x^3 f(x^2) \ dx; \ \ \boxed{d} \ \ 2 \int_0^2 f(t) \ dt.$

- 5. Sia z = 1 i. Allora $\frac{1}{z} = a \frac{1}{\sqrt{2}}(1 i); b \frac{1}{2}(1 + i); c 1 + i; d \sqrt{2}(1 + i).$
- 6. L'insieme di tutti i valori di $\alpha \in \mathbf{R}$ per i quali l'integrale generalizzato

$$\int_0^{+\infty} x^{\alpha} 8^{-x} dx$$

è convergente, è: a \mathbf{R} ; b $(-1, +\infty)$; c $(-\infty, \frac{1}{8})$; d $(8, +\infty)$.

- 7. Se y(x) è la soluzione di $\begin{cases} y' = 6x^5y \\ y(0) = e \end{cases}$ allora $y(1) = \begin{bmatrix} a \end{bmatrix} 5e^6$; $b \end{bmatrix} 6e^5$; $c \end{bmatrix} e^5$; $d \end{bmatrix} e^2$.
- 8. La serie numerica: $\sum_{n=1}^{+\infty} \frac{n!}{8^n}$ a è convergente con somma > 8; b è divergente; c è oscillante; d è convergente con somma = 8.

CALCOLO 1		19 luglio 2005
Cognome:	Nome:	Matricola:

- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. L'insieme di tutti i valori di $\alpha \in \mathbf{R}$ per i quali l'integrale generalizzato

$$\int_0^{+\infty} x^{\alpha} 9^{-x} dx$$

è convergente, è: $a (-1, +\infty); b (-\infty, \frac{1}{9}); c (9, +\infty); d \mathbf{R}.$

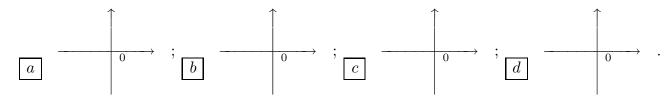
2. Sia $f: \mathbf{R} \to \mathbf{R}$. La frase: $\forall \varepsilon > 0, \exists \delta > 0$ tale che $|x - 9| < \delta$ implica $|f(x) - f(9)| < \varepsilon$ è la definizione di a $f(x) = f(9), \quad \forall x \in \mathbf{R}; \quad b$ $f'(9) = 0; \quad c$ 9 è un punto di massimo locale per f; d f è continua in $x_0 = 9$.

3.

$$\int_0^2 x f(x^2) \ dx =$$

a $2f(4) - \int_0^2 x^3 f'(x^2) dx$; b $f(4) - \int_0^2 x^3 f(x^2) dx$; c $2 \int_0^2 f(t) dt$; d $\frac{1}{2} \int_0^2 f(t) dt$.

- 4. Se y(x) è la soluzione di $\begin{cases} y' = 7x^6y \\ y(0) = e \end{cases}$ allora $y(1) = \boxed{a} \ 7e^6; \boxed{b} \ e^6; \boxed{c} \ e^2; \boxed{d} \ 6e^7.$
- 5. Sia f una funzione due volte derivabile con continuità. Se f(0) = f'(0) = 1 e f''(0) = 1, allora il grafico di $g(x) := \frac{1}{f(x)}$ vicino a x = 0 è:



- 6. Sia $f(x) = |\log(\frac{x}{3})|$ per x > 1 e f(x) = ax + b per $x \le 1$. Per quali valori a, b la funzione f è continua e derivabile per x = 1? \boxed{a} $a = -\frac{1}{3}, b = 1 + \log 3;$ \boxed{b} $a = -\frac{1}{3}, b = \frac{1}{3} + \log \frac{1}{3};$ \boxed{c} $a = \frac{1}{3}, b = -\frac{1}{3} + \log 3;$ \boxed{d} $a = -1, b = 1 + \log 3.$
- 7. La serie numerica: $\sum_{n=1}^{+\infty} \frac{9^n}{n!}$ a è divergente; b è oscillante; c è convergente con somma = 9; d è convergente con somma > 9.
- 8. Sia z = 1 2i. Allora $\frac{1}{z} = a \frac{1}{5}(1 + 2i); b 1 + 2i; c <math>\sqrt{5}(1 + 2i); d \frac{1}{\sqrt{5}}(1 2i).$